본문 바로가기
과학

Why doesn't the electron make a second jump into a higher excited state when external energy is provided during stimulated emission?

by bongin 2023. 5. 20.
728x90
반응형

https://www.quora.com/Why-doesnt-the-electron-make-a-second-jump-into-a-higher-excited-state-when-external-energy-is-provided-during-stimulated-emission

제목 : Why doesn't the electron make a second jump into a higher excited state when external energy is provided during stimulated emission?

 

1.
There would have to be an energy state available at just about the right energy splitting for that to be able to happen.
그것이 일어날 수 있으려면 거의 적합한 에너지분열에서 사용 가능한 에너지 상태가 있어야 합니다.

It’s unlikely to have an atomic system with three levels in which the highest level has exactly the same energy splitting as that from the middle (occupied) level to the lowest level,
가장 높은 수준이 중간(점유) 수준에서 가장 낮은 수준으로 정확히 동일한 에너지 분할을 갖는 3레벨 수준의 원자 시스템을 가질 가능성은 낮습니다.
so the absorption of a photon from the external field that could drive a transition to the highest state is not likely to be on resonance at the same time as the transition to the ground state
가장 높은 상태로의 전환은 기저 상태로의 전환과 동시에 공진 상태에 있을 가능성이 없습니다.
it’s not impossible in principle but I don’t know of a case in which there would be two resonant transitions perfectly arranged like that.
원칙적으로 불가능한 것은 아니지만 그렇게 완벽하게 배열된 두 개의 공진 전환이 있는 경우는 모르겠습니다.

So the rate of stimulated emission would usually be greater than the rate of absorption with further excitation.
따라서 자극 방출 속도(↓)는 일반적으로 추가 여기가 있는 흡수 속도(↑)보다 큽니다.

Atomic physics splittings tend to get smaller and smaller as the energy of the excited state increases.
원자 물리적 분할은 여기 상태의 에너지가 증가함에 따라 점점 더 작아지는 경향이 있습니다.

So to populate a still higher level by two successive absorption you would need to have a means to dissipate some of the energy driving the transition from the middle to the upper level
따라서 두 번의 연속적인 흡수로 더 높은 수준을 채우려면 중간 수준에서 상위 수준으로 전환을 구동하는 에너지의 일부를 소산하는 수단이 필요합니다.

multi-phonon emission in a crystal could do it for example.
예를 들어 결정에서 다중 포논 방출이 가능합니다.

But again it would probably cut down the cross-section for the second absorption.
그러나 다시 두번째 흡수를 위해 단면을 줄일 가능성이 있습니다.

Stimulated emission is basically a resonant phenomenon
유도 방출은 기본적으로 공진 현상입니다.

the frequency of the external field needs to be very close to that of the induced moment (usually electric dipole) between the lower state and the upper state for it to drive the emission.
외부 필드의 주파수는 방출을 유도하기 위해 하부 상태와 상부 상태 사이의 유도 모멘트(일반적으로 전기 쌍극자)의 주파수와 매우 유사해야 합니다.

To create a system like this you would probably want to look into molecular rotational-vibrational bands. Vibrational splittings are close to being equally spaced.
이와 같은 시스템을 만들려면 아마도 분자 회전-진동 밴드를 살펴보고 싶을 것입니다. 진동 분할은 균일한 간격에 가깝습니다.

 

2.

It can, but the next level generally requires a different amount of energy and therefore a different excitation wavelength.

가능하지만 다음 레벨에는 일반적으로 다른 양의 에너지가 필요하므로 다른 여기 파장이 필요합니다.

 

Further excitation is not beneficial to the operation of a laser, so lasers are filtered internally to avoid this.
추가 여기(excitation)는 레이저 작동에 이롭지 않으므로 이를 방지하기 위해 레이저가 내부적으로 필터링됩니다.


In two-photon excitation microscopy, excitation photons have half the frequency needed to excite the electrons to the next energy level.

2광자 여기 현미경에서 여기 광자는 전자를 다음 에너지 수준으로 여기하는 데 필요한 주파수의 절반을 갖습니다.

 

They can be absorbed only when two photons arrive at approximately the same time.

두 개의 광자가 거의 동시에 도착할 때만 흡수될 수 있습니다.

 

The advantage is that the lower frequency (longer wavelength) photons are able to penetrate deeper into a biological sample with less scattering.

이점은 더 낮은 주파수(더 긴 파장) 광자가 더 적은 산란으로 생물학적 샘플에 더 깊이 침투할 수 있다는 것입니다.

728x90
반응형

댓글